ELCT201: DIGITAL LOGIC DESIGN


 Todd Newton
 3 years ago
 Views:
Transcription
1 ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, Dr. Eng. Wassim Alexan, Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter 2017
2 COURSE OUTLINE 1. Introduction 2. GateLevel Minimization 3. Combinational Logic 4. Synchronous Sequential Logic 5. Registers and Counters 6. Memories and Programmable Logic 2
3 4VARIABLE MAP Notice the order of the minterms Remember that the cells in the top row are adjacent to the cells in the bottom row Remember that cells in the most left column are adjacent to the cells in the most right column Remember that the cells in the four corners are adjacent to each 3
4 NOTES ON A 4VARIABLE MAP The number of adjacent squares that may be combined must always represent a number that is a power of two, such as 1, 2, 4, 8 and 16 As more adjacent squares are combined, we obtain a product term with fewer literals One square represents one minterm, giving a term with 4 literals Two adjacent squares represent a term with 3 literals Four adjacent squares represent a term with 2 literals Eight adjacent squares represent a term with 1 literal Sixteen adjacent squares encompass the entire map and produce a function that is always equal to logic 1 4
5 4VARIABLE MAP: EXAMPLE I Simplify the Boolean expression: F A, B, C, D = Σ(0,1,2,4,5,7,8,9,10,12,13) 5
6 4VARIABLE MAP: EXAMPLE I Simplify the Boolean expression: F A, B, C, D = Σ(0,1,2,4,5,7,8,9,10,12,13) F A, B, C, D = C + B D + A BD 6
7 4VARIABLE MAP: EXAMPLE II Simplify the Boolean expression: F w, x, y, z = Σ(0,1,2,4,5,6,8,9,12,13,14) 7
8 4VARIABLE MAP: EXAMPLE II Simplify the Boolean expression: F w, x, y, z = Σ(0,1,2,4,5,6,8,9,12,13,14) F w, x, y, z = y + w z + xz 8
9 CHOICE OF BLOCKS We can simplify a function by using larger blocks Do we really need all blocks? Can we leave some out to further simplify an expression? Any function needs to contain a special type of blocks These are called Essential Prime Implicants We need to define some new terms: Implicant Prime implicant Essential prime implicant 9
10 TERMINOLOGY Implicant (I) Any product term in the SOP form A block of 1s in a Kmap Prime implicant (PI) Block of 1s that cannot be further increased Product term that cannot be further reduced Essential prime implicant (EPI) A prime implicant on a Kmap which covers at least one 1 which is not covered by any other prime implicant is called an Essential Prime Implicant Is C an essential prime implicant? 10
11 THE SYSTEMATIC PROCEDURE FOR SIMPLIFYING BOOLEAN FUNCTIONS 1. Generate all Prime Implicants of the function 2. Include all Essential Prime Implicants 3. For the remaining minterms not included in the Essential Prime Implicants, select a set of other Prime Implicants to cover them, with minimal overlap in the set 4. The resulting simplified function is the logical OR of the product terms selected above 11
12 ILLUSTRATING THE TERMS: EXAMPLE I The Prime Implicants are: A D gray, AC rose, BC D pink, CD purple, ABD green, A BC (yellow). Of which only three are Essential: A D gray, AC rose and BC D pink. 12
13 ILLUSTRATING THE TERMS: EXAMPLE II The Prime Implicants are: BD gray, A BC yellow, AC D purple, ABC green, A CD rose. Of which only four are Essential: A BC yellow, AC D purple, ABC green and A CD rose. 13
14 PRODUCT OF SUMS SIMPLIFICATION USING KMAPS Use the SOP simplification on the zeros of the function in the Kmap to get F Find the complement of F, i.e. F = F Recall that the complement of a Boolean function can be obtained by (1) taking the dual and (2) complementing each literal Or by using DeMorgan s theorem 14
15 PRODUCT OF SUMS MINIMIZATION How to generate a POS from a K map? Use duality of Boolean algebra (DeMorgan s law) Look at the 0s in map instead of the 1s Generate blocks around the 0s This gives the inverse of F Use duality to generate POS Example: F = (0,1,2,5,8,9,10) F = AB + CD + BD F = (A + B )(C + D )(B + D) 15
16 GATE IMPLEMENTATION 16
17 EXAMPLE ON POS MINIMIZATION Given the Kmap below, produce the F from the zeros in the map and then obtain F from it F = AB +AC +A BCD F = (AB )(AC )(A BCD ) F = (A + B)(A + C)(A + B + C + D) 17
18 DON T CARE CONDITIONS There may be a combination of input values which: Will never occur, If they do occur, the output is of no concern The function value for such combinations is called a don t care They are usually denoted with an X Each X may be arbitrarily assigned the value 0 or 1 in an implementation Don t cares can be used to further simplify a function 18
19 MINIMIZATION USING DON T CARES Treat don t cares as if they are 1s to generate Prime Implicants Delete Prime Implicants that cover only don t care minterms Treat the covering of the remaining don t care minterms as optional in the selection process (i.e. they maybe, but need not be covered) 19
20 MINIMIZATION EXAMPLE F w, x, y, z = (1,3,7,11,15) and d w, x, y, z = (0,2,5) What are the possible solutions? 20 20
21 EXAMPLE INVOLVING X Simplify the function whose Kmap is shown at the right F = A C D + AB + CD + A BC or F = A C D + AB + CD + A BD 21
22 ANOTHER EXAMPLE Simplify the function whose Kmap is shown at the right F = A C + AB or F = A C + BD 22
23 NAND AND NOR IMPLEMENTATIONS Digital circuits are frequently constructed with NAND or NOR gates rather than AND & OR gates. NAND and NOR gates are easier to fabricate with electronic components and are the basic gates used in all IC digital logic families A NAND gate has the smallest propagation time delay among the other gates, except for the inverter! 23
24 NAND AND NOR IMPLEMENTATIONS Each NAND or NOR gate requires only 4 transistors Each AND gate requires 6 transistors 24
25 LOGIC OPERATION WITH NAND GATE NOT, AND, and OR can be implemented with NAND! 25
26 CONVERSION TO NAND IMPLEMENTATION Minimized expressions are ANDOR combinations There are two illustrations for NAND gates Key observation: two bubbles eliminate each other Two bubbles equal a straight wire How to generate a sum of minterms using NAND? Use ANDinvert for minterms Use invertor for sum 26
27 CONVERSION TO NAND IMPLEMENTATION Sum of minterms Replace AND with ANDinvert and OR with invertor Still the same circuit! Replace ANDinvert and invertor with NAND F = (A B )(C D ) = AB + CD 27
28 NAND EXAMPLE IMPLEMENTATION Minimize and implement the function F(x, y, z) = (1,2,3,4,5,7), using only NAND gates 28
29 MULTILEVEL NAND CIRCUITS Multilevel circuits conversion rules: 1. Convert all AND gates to NAND with ANDinvert symbols 2. Convert all OR gates to NAND with invertor symbols 3. Check all bubbles in the diagram. For every bubble that is not compensated by another bubble, insert an inverter. Example: 29
30 MULTILEVEL NAND CIRCUITS: AN EXAMPLE F = (AB + A B)(C + D ) 30
31 LOGIC OPERATION WITH NOR GATE NOR can also replace NOT, AND & OR There are two representations of the NOR gate: 31
32 CONVERTING TO NOR IMPLEMENTATIONS Same rules as for NAND implementations F = (AB + A B)(C + D ) With NOR F = (AB + A B)(C + D ) 32
33 DESIGN PROBLEM Design a digital system whose output is defined as logically low if the 4bit input binary number is a multiple of 3; otherwise, the output will be logically high. The output is defined if and only if the input binary number is greater than 2. 33
34 DESIGN PROBLEM Design a digital system whose output is defined as logically low if the 4bit input binary number is a multiple of 3; otherwise, the output will be logically high. The output is defined if and only if the input binary number is greater than 2. 34
35 DESIGN PROBLEM 35
36 DESIGN PROBLEM SOP POS Y SOP = B D + A C + A BD + BC D + AB C + ACD Y POS = (A + B)(B + C + D )(A + C + D)(A + B + C + D)(A + B + C + D ) 36
37 DESIGN PROBLEM What if you are asked to implement these digital circuits using only NAND gates? Is that possible? 37
ELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter
More informationChapter 3. GateLevel Minimization. Outlines
Chapter 3 GateLevel Minimization Introduction The Map Method FourVariable Map FiveVariable Map Outlines Product of Sums Simplification Don tcare Conditions NAND and NOR Implementation Other TwoLevel
More informationChapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationGateLevel Minimization
MEC520 디지털공학 GateLevel Minimization JeeHwan Ryu School of Mechanical Engineering GateLevel MinimizationThe Map Method Truth table is unique Many different algebraic expression Boolean expressions may
More informationGate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
More informationGate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
More informationDKT 122/3 DIGITAL SYSTEM 1
Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits
More informationAssignment (36) Boolean Algebra and Logic Simplification  General Questions
Assignment (36) Boolean Algebra and Logic Simplification  General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
More informationSlide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary
Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationLSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a
More informationCombinational Logic Circuits Part III Theoretical Foundations
Combinational Logic Circuits Part III Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard
More informationChapter 2 Combinational
Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization HOANG Trang 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean Equations Binary Logic
More informationExperiment 4 Boolean Functions Implementation
Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.
More informationA B AB CD Objectives:
Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3
More informationSummary. Boolean Addition
Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationSimplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
More informationSpecifying logic functions
CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last
More information數位系統 Digital Systems 朝陽科技大學資工系. Speaker: FuwYi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷
數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: FuwYi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,
More informationGet Free notes at ModuleI One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
More informationGateLevel Minimization. BME208 Logic Circuits Yalçın İŞLER
GateLevel Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
More informationChapter 2 Boolean algebra and Logic Gates
Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions
More informationCombinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
More informationBoolean Analysis of Logic Circuits
Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem  IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationSimplification of Boolean Functions
COM111 Introduction to Computer Engineering (Fall 20062007) NOTES 5  page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean
More information4 KARNAUGH MAP MINIMIZATION
4 KARNAUGH MAP MINIMIZATION A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra
More informationKarnaugh Map (KMap) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using Kmap
Karnaugh Map (KMap) Ch. 2.4 Ch. 2.5 Simplification using Kmap A graphical map method to simplify Boolean function up to 6 variables A diagram made up of squares Each square represents one minterm (or
More information2.6 BOOLEAN FUNCTIONS
2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions SumofProducts (SOP),
More informationLiteral Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10
Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
More informationCombinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
More information2.1 Binary Logic and Gates
1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary
More informationCSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map
CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,
More informationChapter 3 Simplification of Boolean functions
3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean
More informationExperiment 3: Logic Simplification
Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed ElSaied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show
More informationECE380 Digital Logic
ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8 Terminology For
More informationCMPE223/CMSE222 Digital Logic
CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Terminology For a given term, each
More informationIncompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples
Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples Incompletely specified functions
More informationDigital Logic Design (CEN120) (3+1)
Digital Logic Design (CEN120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MTFPDP) PEC Certified Professional Engineer (COM/2531)
More informationCh. 5 : Boolean Algebra &
Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying
More informationEEE130 Digital Electronics I Lecture #4_1
EEE130 Digital Electronics I Lecture #4_1  Boolean Algebra and Logic Simplification  By Dr. Shahrel A. Suandi 46 Standard Forms of Boolean Expressions There are two standard forms: Sumofproducts form
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
More informationUNIT II. Circuit minimization
UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
More informationCHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey
CHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input
More informationCombinational Logic & Circuits
WeekI Combinational Logic & Circuits Spring' 232  Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other
More informationGateLevel Minimization. section instructor: Ufuk Çelikcan
GateLevel Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to
More informationQUESTION BANK FOR TEST
CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationSwitching Circuits & Logic Design
Switching Circuits & Logic Design JieHong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 5 Karnaugh Maps Kmap Walks and Gray Codes http://asicdigitaldesign.wordpress.com/28/9/26/kmapswalksandgraycodes/
More informationDigital Logic Lecture 7 Gate Level Minimization
Digital Logic Lecture 7 Gate Level Minimization By Ghada AlMashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. Kmap principles. Simplification using Kmaps. Don tcare
More informationCode No: 07A3EC03 Set No. 1
Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,
More informationDigital Logic Design. Outline
Digital Logic Design GateLevel Minimization CSE32 Fall 2 Outline The Map Method 2,3,4 variable maps 5 and 6 variable maps (very briefly) Product of sums simplification Don t Care conditions NAND and NOR
More information1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
More informationDIGITAL CIRCUIT LOGIC UNIT 7: MULTILEVEL GATE CIRCUITS NAND AND NOR GATES
DIGITAL CIRCUIT LOGIC UNIT 7: MULTILEVEL GATE CIRCUITS NAND AND NOR GATES 1 iclicker Question 13 Considering the KMap, f can be simplified as (2 minutes): A) f = b c + a b c B) f = ab d + a b d AB CD
More informationR.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai
L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT  I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean
More informationUnitIV Boolean Algebra
UnitIV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of
More informationMenu. Algebraic Simplification  Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification
Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification  Boolean Algebra Minterms (written as m i ):
More informationGateLevel Minimization
GateLevel Minimization Mano & Ciletti Chapter 3 By Suleyman TOSUN Ankara University Outline Intro to GateLevel Minimization The Map Method 2345 variable map methods ProductofSums Method Don t care
More informationUniversity of Technology
University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 5 & 6 Minimization with Karnaugh Maps Karnaugh maps lternate way of representing oolean function ll rows
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationX Y Z F=X+Y+Z
This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output
More informationPresented By : Alok Kumar Lecturer in ECE C.R.Polytechnic, Rohtak
Presented By : Alok Kumar Lecturer in ECE C.R.Polytechnic, Rohtak Content  Introduction 2 Feature 3 Feature of BJT 4 TTL 5 MOS 6 CMOS 7 K Map  Introduction Logic IC ASIC: Application Specific
More informationENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.
Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to
More informationSWITCHING THEORY AND LOGIC CIRCUITS
SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra
More informationLecture (05) Boolean Algebra and Logic Gates
Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either
More informationDIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS)
DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS) 1 Learning Objectives 1. Given a function (completely or incompletely specified) of three to five variables, plot it on a Karnaugh map. The function
More information(Refer Slide Time 6:48)
Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture  8 Karnaugh Map Minimization using Maxterms We have been taking about
More informationGraduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB
CH5 Karnaugh Maps Lecturer: 吳安宇教授 Date:2006/0/20 CCESS IC L Problems in lgebraic Simplification The procedures are difficult to apply in a systematic way. It is difficult to tell when you have arrived
More informationBOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.
COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless
More informationModule 7. Karnaugh Maps
1 Module 7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or SumofMinterms (SOM) 2.4 Canonical product of sum or ProductofMaxterms(POM)
More informationCombinational Devices and Boolean Algebra
Combinational Devices and Boolean Algebra Silvina Hanono Wachman M.I.T. L021 6004.mit.edu Home: Announcements, course staff Course information: Lecture and recitation times and locations Course materials
More information1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z
CS W3827 05S Solutions for Midterm Exam 3/3/05. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
More informationENDTERM EXAMINATION
(Please Write your Exam Roll No. immediately) ENDTERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA103 Subject: Digital Electronics Time: 3 Hours Maximum
More informationLarger Kmaps. So far we have only discussed 2 and 3variable Kmaps. We can now create a 4variable map in the
EET 3 Chapter 3 7/3/2 PAGE  23 Larger Kmaps The variable Kmap So ar we have only discussed 2 and 3variable Kmaps. We can now create a variable map in the same way that we created the 3variable
More informationENGIN 112. Intro to Electrical and Computer Engineering
ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic
More informationStandard Forms of Expression. Minterms and Maxterms
Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:
More informationSwitching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION
Switching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION Twovariable kmap: A twovariable kmap can have 2 2 =4 possible combinations of the input variables A and B. Each of these combinations,
More informationUNIT4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.
UNIT4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?
More informationMODULE 5  COMBINATIONAL LOGIC
Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5  COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific
More informationChapter 6. Logic Design Optimization Chapter 6
Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Twolevel Optimization Manipulating a function until it is
More information2008 The McGrawHill Companies, Inc. All rights reserved.
28 The McGrawHill Companies, Inc. All rights reserved. 28 The McGrawHill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
More informationENEL 353: Digital Circuits Midterm Examination
NAME: SECTION: L01: Norm Bartley, ST 143 L02: Steve Norman, ST 145 When you start the test, please repeat your name and section, and add your U of C ID number at the bottom of the last page. Instructions:
More informationBoolean Algebra and Logic Gates
Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can
More informationBinary logic. Dr.AbuArqoub
Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible
More informationB.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is  Write the first 9 decimal digits in base 3. (c) What is meant by don
More information9/10/2016. The Dual Form Swaps 0/1 and AND/OR. ECE 120: Introduction to Computing. Every Boolean Expression Has a Dual Form
University of Illinois at UrbanaChampaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Boolean Properties and Optimization The Dual Form Swaps 0/1 and AND/OR Boolean
More informationR07
www..com www..com SET  1 II B. Tech I Semester Supplementary Examinations May 2013 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, EIE, BME, ECC) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions
More informationCS470: Computer Architecture. AMD Quad Core
CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flipflops Functional bocks: Combinational, Sequential Instruction
More informationComputer Science. Unit4: Introduction to Boolean Algebra
Unit4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will
More informationENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 2 Intro to Electrical and Computer Engineering Lecture 8 Minimization with Karnaugh Maps Overview Kmaps: an alternate approach to representing oolean functions Kmap representation can be used to
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.
Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms
More information